Programmingenvironmerns for Novices

Mark Guzdial
Collegeof Computing, Georgialnstitute of Tednology
guzdial@cc.gat ech. edu

October 11, 2002

1 Specializing Environmen ts for Novices

The task of specializingprogrammingernvironmens for novicesbeginswith the recog-
nition that programmingis a hard skill to learn. The lack of studert programming
skill even after a year of undergraduatestudiesin computer sciencewas measuredin
the early 80's[1] and againin this decade[2]. We know that studerts have problems
with looping constructs [3], conditionals [4], and asserbling programs out of base
componerts [5].

Are thesethe critical pieces?If we dewloped a languagethat changedhow condi-
tionals work or loops, or make it easierto integrate componerts, would programming
becomeeasier? That's the issuethat dewelopers of educational programming ervi-
ronmerts are asking.

Ead novice programming environmert (or family of ervironmerts) is attempting
to answer the question, \What makes programming hard?" Ead answer to that
guestion implies a family of ervironmens that addressthe concernwith a set of
solutions.

Obviously, there are a great many answersto the question\What makesprogram-
ming hard?" For ead answer, there are a great many potential environmens that
act upon that answver, and then there are a great many other potertial ernvironmens
that deal with multiple answers to that question|whic h makes sense,sinceit's al-
most certainly true that there is no one correct answer to that questionthat applies
to all people.

Not all of these potential ervironments have beenbuilt and explored, however.
The eld of Computer ScienceEducation Researb is too new, and there are too few
peopledoing work in this eld. We are still in the stage of the eld of identifying
potential answersto key questions|indeed, even guring out what the key questions
are!

There are many novice programming environmens that have beenbuilt, and not
all canbediscussedn a short primer. Instead, this chapter will focuson three families

[Ty
! %&%
4,55, 56789

) (% *

Prets we (%
A - R

2283 #

Figure 1: The Logo family of novice programming environmerts (italics indicate real
ervironmerts tuned to novices)

that have beenparticularly inuential in the dewelopmen of modern ervironments
and in the thinking of the CS Ed researb comnunity.

The Logo family of programming environments, that beganas an o -shoot
of the Al-programming languageLisp and spawvned a rich variety of novice
programming ervironmens.

The rule-basal family of programmingernvironmerts, that drew from both Logo
and Smaltalk-72, but even more directly, Prolog.

The traditional programming languagefamily of novice programming environ-
merts, which tried not to changethe language but insteadprovide newstudert-
certered supports for existing programming languages.

2 Logo and its Descendants: The Goal of Compu-
tational Literacy

Logo was deweloped in the mid-1960'sby Wally Feuzeigand Danny Bobrow at BBN
Labs, in consultation with SeymourPapert at nearby MIT. Logo was designedto be
\Lisp without parertheses." Lisp was a popular programming languagefor arti cial
intelligenceprogramming. Lisp was known for its exibilit y and the easewith which
data could becomeprogram, or vice-versa,makingit very easyfor programsto manip-
ulate their own componerts. Lisp was especially good for creating and manipulating
represemations of knowledge. (SeeFigure 1 for the family tree of this section.)

The answer to the question of \What makes programming hard?" for the Logo
deweloperswasanother question. When Logowas rst being deweloped, peopledidn't
know that programmingwas goingto be sohard for somany. Programming was still
a curiosity, an activity practiced only by the few who had accessto the still-rare
madines. The Logo dewelopers asked instead \Wh y should studerts program?"

The answer to that question was related to Piagetian thinking about learning.
Seymour Papert worked for a time in Jean Piaget's laboratory. The goal for Logo
wasfor studerts to think about their own thinking, by expressinghemsehesin their

programsand then debuggingthe programsuntil they worked [6]. By debuggingthe
programs,the argumen wen, the studerts were debuggingtheir own thinking.

Studerts' early activities with Logoinvolved mathematical and word games.Logo
was especially strong at playing gameswith language,e.g.,creating a Pig Latin gen-
erator. Later, a robot \turtle" wasaddedto the Logo environmert, sothat studerts
could cortrol the robot with commandslike forward 1 to move the robot forward
a little bit, right 1 to turn right one degree,and pendownso that the robot's pen
(literally, a pen attached to the robot) would draw on the surfacebelow the robot as
it moved. With the turtle, Logo could be usedfor graphics,and in reverse,graphics
could be usedto understand mathematics. When Logo was moved onto graphical
userinterfaces(the rst usesof Logowere on paper-scrollingteletype terminals), the
turtle wert with it, but as a graphical object that left graphical pen trails on the
screen.With graphics,mathematics,and languagesupport in Logo, tudent programs
in Logo could range over a broad set of knowledgeareas.

But the tasksthat studerts could useLogo for werestill pretty limited. Logowas
fairly popular in scienceand math classespbut not much farther. Further, questions
started to be raised about whether studerts were really learning to program [7], and
what bene ts (if any) wereto be gainedfrom learning to program [8, 9].

The next step in the ewlution of Logo wasto consider\What tasksdid studerts
want to useprogrammingfor?” Or, to build upon the core questionof Logo, \What
domains did studerts want to learn about through programming?" The rst ver-
sionsof Logo basically o ered a programming ervironmert that was a variation of a
commandline: A graphical areawas visible.

The rst kind of Logothat really changedthe studerts' programmingenvironmert
LogoWriter. LogoWriter integrated a word-processor,capableof both graphicsand
text, with a Logo interpreter. From a languageperspective, the LogoWriter turtle
could now act as a cursor changing letters beneathit, or stamping graphicsonto the
page. From an environmert perspective, LogoWriter felt asmuch like an applications
program as a programming language. Now, studerts could do languagemanipula-
tion wherethey saw the languagemanipulation (as the cursor moved and the words
changed), and create programs that constructed mixed text-and-graphics the way
that they might in other applications software. LogoWriter took seriouslyproviding
task support so that the range of poterntial domainsto explore with programming
was as broad as possible.

LogoWriter was used by Idit Harel in her thesis studies where she had fourth-
graders(10 yearsold) building software to tead fractions to third-graders [10]. Her
fourth-graders created software that wasn't too sophisticated,but did mix text and
graphicsutilizing the special featuresof LogoWiter. In the end, the fourth-graders
learnedsigni cantly more about fractions than a comparisongroup of fourth-graders
taking a traditional math curriculum.

StarLogofollowed along the path of extendingthe languageand the ervironmert
to focuson a particular kind of task. StarLogo supported exploration of distributed
ervironmerts [11]. Mitchel Resnik provided studerts with not oneturtle, but liter-

3

ally thousandsof turtles|all running essenally the same,small program. He also
introduced the notion of a patch, a spot on the screenthat could hold state (such
as a color) and could run programs, but could not move as a turtle could. By using
patchesto represen food for ants or wood chips for termites, StarLogo could be used
to explore how ants (turtles) gather food or how termites (turtles) create piles, all
without coordination but through the power of simple, distributed programs.

MOOSE Crossing(by Amy Bruckman) againtuned Logoto a particular domain
and task, but a sccial onerather than a scierti ¢ or academictask. MOOSE Crossing
is a sharedtextual virtual reality. Studerts signonto MOOSE with specializedclient
software and explore a world created by peer studerts (all under 12 years old)|
and extend the world themsehes. Studerts might create specialized rooms where
ewverything said in the room is turned into Pig Latin, or specializedobjects like pet
dragonsthat follow their ownersaround. Studerts move around, cortrol their world,
and interact through Logo-like commands. These commandscan then be strung
together in proceduressud that the dragon\w agsits tail" (i.e., displays the words
\dragon wagsits tail* to all thosein the sameroom of the virtual space)when the
dragonis \p et" (i.e., someuserin the sameroom types\p et the dragon.")

Bruckman found that studerts did learn programmingin this environmen, sup-
ported and motivated by the sccial cortext [12]. Studerts in MOOSE Crossingwere
able to talk with oneanother, shov oneanother their creations,and even teach eat
other to program, a surprising evert that shedocumerted. Her studies shoved that
MOOSE defeated some gender stereolypes by showing that girls were just as suc-
cessfulat programming as boys, if the context is motivating [13]. This was a strong
nding in favor of Papert's initial premisethat it waswhat onedid with programming
that really mattered most.

Andrea diSessalsoextendedLogo, but in adi erent direction. Rather than tune
it to a speci ¢ task, he tried to think about what computation would look like if it
were a real literacy|as ubiquitous astext reading and writing is today [14]. Boxer
wasbasedon a principle of naive realism: Every object in the systemhasan on-screen
graphicalrepresetation that canbeinspected,modi ed, and extended. For example,
variables are not just namesin Boxer. Creating a variable createsa namedbox on
the screenwhich correspndsto that variable. Setting the variable's value changes
(visibly) the cortents of the correspnding box. Changing the cortents of the box
(with direct manipulation and typing) changesthe value of the variable.

diSessaansvers the question about \What's hard about programming?" with
the answer, \The interface.” Too much is abstract and hidden in traditional pro-
gramming languages.Boxer both makesthe systemeasyto understand (becauseof
naive realism) and easyto apply to domainsbecauselike LogoWtiter, it plays upon
similarity to applications software.

Howewer diSessas alsoanswver the questionwith the answer, \The culture." Pro-
grammingwill alsobe challenging,but no more challengingthan learningto read and
write. If programming skill was somethingthat one started at an early age, and it
was somethingthat everyonedid, it would be easierfor studerts to pick up. The

4

interesting question is what sud computational literacy meansfor a scciety. Does
scienceand mathematics becomeeasierto learn becauseeveryone hasthe computa-
tional skills to dewelop models and visualizationsto explore and better understand
complexconcepts?

Smalltalk-72, by Alan Kay, Dan Ingalls, Adele Goldberg, and other menbers of
the Xerox PARC Learning Researb Group, extendedthe model of Logo in se\eral
di erent ways. Smalltalk was deweloped along the path to creating the Dynalook,
a computer whosepurposeis to support learning through creation and exploration
of the rich range of media that a computer enables[15]. Kay agreedwith Papert
that computers should be used by studerts for knowledge expressionand learning
through debuggingof those expressions. Howeer, he felt that the computational
power provided by Logo was too weak, so he inverted object-oriented programming
as a way of enabling much more complex artifacts to be createdin exploration of
more complex domains. The command-line metaphors of Logo were too weak for
the drawing, painting, and typeset-qualiy text that Kay felt was critical in order to
enablerich media creation, so he and his group literally inverted the desktop user
interface aswe know it today (Figure 2).

While Smalltalk-72 was trialed successfullywith novice programmers,the later
versionsemphasizedobject-oriented programming for expert programmersand the
desktopuserinterfacefor applicationssoftware, and de-emphasizedhe computational
literacy ideasthat Kay shared with diSessa. The notion of Smalltalk for novice
programmersdisappeared for perhaps 15 years. The latest versionsof Smalltalk,
Squeak[16, 17], is being usedagain with studerts, including younger children.

3 Rule-Based Programming: Changing the Lan-
guage and the Interface

Another set of answersto the question\What makes programming hard?" includes
\The interface" (as diSessasaid) but also\The kind of programming” (as Kay said).
A group of researbers have dewloped non-textual programming environmens ori-
erted aroundrule-basal programming rather than traditional imperative or procedural
programming. Studerts using rule-basedprogramming descrike states of the world
as opposedto telling the computer how to operate upon the world.

Prolog was a popular rule-basedprogramming language,even with novices, even
when it simply had a command-linekind of interface. In Prolog, one states facts
about the world, e.g.,\The factorial of n is 1if n = 1, and otherwise,it's the factorial
ofn 1." That isn't explicitly telling the computerhow to get a factorial: It statesa
de nition of factorial, which happensto be completeenoughto be executable.That's
how Prolog works. Prolog avoids someof the complexitiesof loops and conditionals
with which researb shows studerts have di cult .

Figure 2: Smalltalk-72,the rst systemwith overlapping windows, icons, merus, and
a mousepointing devicelall designedfor the novice programmer.

Figure 3: An AgentSheetssimulation of a train

StagecasiCreator' and AgerntSheet$ both explicitly support rule-basedprogram-
ming and a di erent kind of interfacefor programming. The dewlopers of Stagecast
(formerly KidSim and Caocoa) explicitly aimed to use all that was learned about
direct-manipulation interfacesto make the task of programming easier[18]. In both
of thesetools, the userde nes rules that descrilke how the state of the world should
changeif particular conditions are met.

For example, considerthe AgenSheetssimulation of a train (in Figure 3). The
rule appearson the right of Figure 3 (from [19]). The rule statesthat if the train is
on the track on the left of the track, the train should move forward onto the right of
the track.

Both AgentSheetsand StagecastCreator are most often used for building sim-
ulations or video games(Figure 4). The graphical nature of rules lend themselhes
to the kinds of motion and manipulations that many videogamesprovide. Both
AgentSheetsand StagecastCreator support non-graphicalrules, as well. For exam-
ple, a more complexif condition canleadto a set of then actions, including sounds
and setting variable values.

Both areusedextensiwely in educationalsettings. StagecastCreator hasbeenused
by kids to build a variety of videogamesjncluding se\eral for Internet competitions.
AgentSheetshasbeenusedin somequite remarkable simulations for exploring sccial
studies, e.g.,simulations of how peacefulprotestscanbecomeriots, in a StarLogo-like
fashion[20].

ToonTalk® by Ken Kahn is explicitly in uenced by the work of Seymour Pa-
pert, but it follows the rule-basedand non-text model of StagecastCreator and
AgentSheets. ToonTalk takesthe model of programming-as-videogamenuch fur-
ther than theseother two environmerts. In ToonTalk, a studert's program explicitly

thttp://www.stagec ast.c om
2http://www.agents heets .com
Shttp://www.toonta Ik. com

Figure 4: StageCastSimulation

Figure 5: ToonTalk charactersmanipulate Lego-like data

manipulates characters who, in turn, manipulate data and structures of data which
appear as Lego bricks (Figure 5). The rendering of ToonTalk is exceptionally high-
quality: The look-and-feelis as nice as a high-end videogame(Figure 6).

ToonTalk givesthe sameanswersto \What makesprogramminghard?" as Stage-
cast Creator and AgerntSheets,but it provides someadditional ones.

ToonTalk is concernedwith making it obvious who is doing what a program
commands.Agency is madevisible through its characters.

Like Boxer, ToonTalk includesnaive realismin that everything is visible. What's
more, ToonTalk provides the metaphor of Legoto make clear how virtual ob-
jects are, literally, assemblé.

ToonTalk takesgreat painsto make surethat its executionhasthe samerealism
ashigh-endvideogames.For example, ToonTalk (like StarLogo) providesa high

8

Figure 6: ToonTalk running hasmultiple charactersand asserbled data elemerts, all
renderedin beautiful quality

degreeof concurrency|things happenat once,just asthey do in the real world.
Kahn beliewesthat this makesit easierfor studerts to understandand dewelop
in ToonTalk.

4 Putting a New Face on an Old Language: Pro-
gramming to be Programmers

Still another answer to the questionof \What makesprogramming hard?" is to say,
\It's not the programming language.In fact, using idiosyncratic or ad hoc program-
ming languageslecreasestudert motivation, sincethe programmingskills deweloped
can't be used elsewhere. Instead, it's the programming ervironmert|it needsto
support learning the skills of expert programmers." This answer is probably most
relevant to those studerts studying computer scienceas a potential profession,but
somehave arguedthat it's alsorelevant to studerts studying programmingto learn
problem-solvingskills [21]. Environmerts that act upon this answer emphasizeeat-
ing designskills and s@ olding (providing additional support that studerts needbut
experts don't [22]) studerts to usetraditional languages.

Most of this work wasdonewhen Pascalwasthe dominarnt programminglanguage
in sdhools (Figure 7). Theseervironmens had in commonsupport for structured edit-
ing and designsupport. Structured editing refersto how the text of the program is
manipulated. Rather than simply typing the textual program, structured editors sup-

L #S " %

Figure 7: Family of novice programming ervironmens basedon supporting tradi-
tional programminglanguages

Figure 8: A Geniefor loop with placeholdersto-be-completed

port speci cation of elemernts (e.g., from merus) and the completion of placcholders
that Il in the details of the program.

Probably the largest e ort to create structured Pascal editors for studerts was
the Genie e ort at Carnegie-MellonUniversity [23]. Over about a decade,se\eral
di erent Genieeditors werecreated. All of them provided structured editing support.
For example,a user might choosea for loop to be insertedinto her code. The loop
would be insertedwith placeholdersdentifying whereadditional piecesneededto be
speci ed (Figure 8), which could be completedby selectingplaceholdersand making
meru selections.Geniealso provided visualizationsin its debuggerssothat diSessa's
principle of naive realismwas usedto facilitate debugging(Figure 9).

The Geniedewlopers alsorealizedthat part of studerts' problem with program-
ming wasin guring out how to start and how to move forward to completion. Stu-
derts lacked designskills [21]. Genieprovided designviewsof programsthat explicitly
encouragedto seetheir programs as sets of componerts that they were asserbling
(Figure 10).

10

Figure 9: Genie'seditor with visualizations of data elemerts

Figure 10: Genie'sdesignview

11

Figure 11: GPCeditor: Goal-Plan-Cade editor

The GPCeditor was another Pascal-basedstructured editor, like Genie, but it
started from the designview [24]. Rather then chooselanguageelemers, studerts
usingthe GPCeditor speci ed their gaals, andthen selectedplans from a Plan Library,
which were instantiated as code (thus, Goal-Plan-Cade editor). Figure 11 shows the
studerts goal-plandecompsition in the upper left, their Plan Library in upper right,
the actual code (with the selectedcode correspnding to the highlight goal-plan) in
lower left, and the hierarchy of goal-plansin the lower right (overlapped with the
executionwindow of a running program).

The GPCeditor was notable for its ewaluation e ort. It was usedin secondary
schools for seweral years,and ndings suggestthat studerts did dewelop designskills
that transferred from GPCeditor to more traditional Pascal programming erviron-
merts [24]. Howeer, it's not clearthat GPCeditor madethe task any easier.

Successorgo GPCeditor followed the same progressionas Logo, in that they
provided support for speci ¢ kinds of tasks that might themselhes be motivating to
studerts. Emile supported studerts building hypermedia(basedon HyperCard) pro-
gramsthat simulated physical systems[25), using a goal-plan-cale structure to ease
the editing of the (fairly) traditional programming language. The study of Emile
showved that studerts did learn a lot about physicsthrough construction of their sim-
ulations, but lessabout programming. A still later successorModellt [26], supported
simulation of systems,but moved away from programmingto a direct-manipulation
system that supported speci cation of relationships between simulation factors as

12

manipulation of graphical and textual statemerns.

5 Summary: Are those the right problems?

In the over forty years of programming ervironmens for novicesthat we skimmed
over here, it is clear that the researb community has only started to addressthe
guestion of \What's hard about programming?" There are a great many answers
that have scarcely been addressed. For example, we know that today's children
use processorsall the time, but not on the desktoplin their handheld videogames,
cellphones,and Palm Pilots. Is programming too locked to the desktop? What
doesprogramming meanon thesesmaller devicesthat might be more motivating for
studerts to manipulate?

It may bein all of theseervironments that it wasn't the ervironmen that caused
the problem! Perhapsthe curriculum of introductory programming classess wrong.
Perhapswe needto consideralternative ways of introducing theseconcepts.

Finally, it may be that \What makesprogramminghard?" is not the most fruitful
guestionto ask. Perhapswe don't know yet what programming really is or what it
could be (as diSessasuggestsin his book [14]). Perhapswe don't know yet what
studerts would really want to learn programming for.

This is not a dismal assessmenof the eld|it's an excited one! Designingpro-
grammingenvironmerts for novicesis a fascinating eld that we have only just started
to explore. There is a great many more questionsand answersto explore,and some
wonderful environments yet to build and try in that exploration.

13

References

[1] Phyllis C. Blumenfeld, Elliot Solavay, Ronald W. Marx, JosephS. Krajcik, Mark
Guzdial, and Annemari Palincsar. Motiv ating project-basedlearning: Sustaining
the doing, supporting the learning. Educational Psychol@ist, 26(3 & 4):369{398,
1991.

[2] Amy Bruckman. Situated support for learning: Storm's weelend with rachael.
Journal of the Learning Sciene@s 9(3):329{372,2000.

[3] Amy Bruckman, Carlos Jensen,and Austina DeBorte. Gender and program-
ming achievemer in a csclervironmert. In Gerry Stahl, editor, Proceaedings of
the 2002 Computer Supprted Collalorative Learning conferene, pagesin{Press.
University of Coloradoat Boulder, Boulder, CO, 2001.

[4] Andrea diSessa.ChangingMinds. MIT Press,Cambridge, MA, 2001.

[5] T. R. G. Green. Conditional program statemers and comprehensibiliy to pro-
fessionalprogrammers. Journal of Occupational Psycholgy, 50:93{109,1977.

[6] Mark Guzdial. Software-realizedsca olding to facilitate programmingfor science
learning. Interactive Learning Environments 4(1):1{44, 1995.

[7] Mark Guzdial. Squek: Object-oriented designwith Multimedia Applications.
Prentice-Hall, Englewood, NJ, 2001.

[8] Mark Guzdial, Michael Konneman, Christopher Walton, Luke Hohmann, and
Elliot Solavay. Layering sca olding and cad on an integrated workbend: An
e ectivedesignapproad for project-basedearning support. Interactive Learning
Environments 6(1/2):143{179, 1998.

[9] Idit Harel and Seymour Papert. Software design as a learning environmert.
Interactive Learning Environments 1(1):1{32, 1990.

[10] C. Hoylesand R. Noss.Learning Logo and Mathematics MIT Press,Cambridge,
MA, 1992.

[11] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Badk
to the future: The story of squeak,a practical smalltalk written in itself. In
OOPSLA'97 Conferenee Proceadings pages318{326.ACM, Atlanta, GA, 1997.

[12] Alan Kay and Adele Goldberg. Personaldynamic media. IEEE Computer, pages
31{41, 1977.

[13] D.M. Kurland, C.A. Clemen, R. Mawby, and R.D. Pea. Mapping the cognitive
demandsof learningto program. In R.D. Peaand K. Sheingold,editors, Mirr ors
of Minds, pages103{127.Ablex, Norwood, NJ, 1986.

14

[14] Michael McCradken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-
gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, lan Utting, and
TadeuszWilusz. A multi-national, multi-institutional study of assessmenof
programming skills of rst-y ear csstuderts. ACM SIGCSE Bulletin, 33(4):125{
140,2001.

[15] Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. Evolution of
novice programmingernvironmerts: The structure editors of carnegie-melloruni-
versity. Interactive Learning Environments 4(2):140{158,1994.

[16] SeymourPapert. Mindstorms: Children, computers, and powerful ideas. Basic
Books, New York, NY, 1980.

[17] R.D. Pea and D.M. Kurland. On the cognitive e ects of learning computer
programming. In R.D. Peaand K. Sheingold,editors, Mirr ors of Minds, pages
147{177.Ablex Publishing, Norwood, NJ, 1986.

[18] Alex Repenning, A. loannidou, and J. Phillips. Collaborative useand designof
interactive simulations. Proceeings of Computer Supprted Collalorative Learn-
ing Conferene at Stanford (CSCL'99), 1999.

[19] Alex Repenning, A. loannidou, and J. Zola. Agensheets: End-user pro-
grammable simulations. Journal of Articial Saieties and Sccial Simulation,
3(3), 2000.

[20] M. Resnik. Turtles, Termites, and Trac Jams: Explorations in Massively
Parallel Microworlds MIT Press,Cambridge, MA, 1997.

[21] David Can eld Smith, Allen Cypher, and Jim Spohrer. Kidsim: Programming
ageris without a programminglanguage.Communiations of the ACM, 37(7):55{
67,1994.

[22] E. Solovay, S.L. Jadkson, J. Klein, C. Quintana, J. Reed, J. Spitulnik, S.J.
Stratford, S. Studer, J. Eng, and N. Scala. Learning theory in practice: Case
studies of learner-cetered design. In M.J. Trauber, editor, CHI96 Conferene
Proceadings pages189{196.Vancou\er, British Columbia, Canada,1996.

[23] Elliot Solovay. Learning to program = learning to construct medanismsand
explanations. Communiations of the ACM, 29(9):850{858,1986.

[24] Elliot Solowvay, Je rey Bonar, and Kate Ehrlich. Cognitive strategiesand looping
constructs: An empirical study. Communiations of the ACM, 26(11):853{860,
1983.

[25] Elliot Solovay, Kate Ehrlich, Je rey Bonar, and J. Greenspan.What do novices
know about programming? In Andre Badre and Ben Stneiderman, editors,

15

Directions in Human-Computer Interaction, pages87{122. Ablex Publishing,
Norwood, NJ, 1982.

[26] JamesC. Spohrer and Elliot Solavay. Putting it all togetheris hard for novice
programmers.In Proceedings of the IEEE International Conferene on Systems,
Man, and Cybernetics volume March. 1985. Tucson,AZ.

16

