
ProgrammingEnvironments for Novices

Mark Guzdial
Collegeof Computing, GeorgiaInstitute of Technology

guzdial@cc.gat ech. edu

October 11, 2002

1 Specializing Environmen ts for Novices

The task of specializingprogrammingenvironments for novicesbeginswith the recog-
nition that programming is a hard skill to learn. The lack of student programming
skill even after a year of undergraduatestudiesin computer sciencewas measuredin
the early 80's [1] and again in this decade[2]. We know that students have problems
with looping constructs [3], conditionals [4], and assembling programs out of base
components [5].

Are thesethe critical pieces?If we developed a languagethat changedhow condi-
tionals work or loops,or make it easierto integrate components, would programming
becomeeasier? That's the issuethat developers of educational programming envi-
ronments are asking.

Each novice programmingenvironment (or family of environments) is attempting
to answer the question, \What makes programming hard?" Each answer to that
question implies a family of environments that addressthe concern with a set of
solutions.

Obviously, there area great many answersto the question\What makesprogram-
ming hard?" For each answer, there are a great many potential environments that
act upon that answer, and then there are a great many other potential environments
that deal with multiple answers to that question|whic h makes sense,since it's al-
most certainly true that there is no onecorrect answer to that question that applies
to all people.

Not all of thesepotential environments have been built and explored, however.
The �eld of Computer ScienceEducation Research is too new, and there are too few
peopledoing work in this �eld. We are still in the stageof the �eld of identifying
potential answers to key questions|indeed, even �guring out what the key questions
are!

There are many novice programmingenvironments that have beenbuilt, and not
all canbediscussedin a short primer. Instead, this chapter will focuson three families

1

! " # $

! %& %

! " # " $ %&' (%) " * (%

+ ' , %! " # " - . . + / 01 %" 2 2 &3 #

+ 4 , 55' , 56 78 9

Figure 1: The Logo family of novice programmingenvironments (italics indicate real
environments tuned to novices)

that have beenparticularly in
uen tial in the development of modern environments
and in the thinking of the CS Ed research community.

� The Logo family of programming environments, that began as an o�-shoot
of the AI-programming languageLisp and spawned a rich variety of novice
programmingenvironments.

� The rule-based family of programmingenvironments, that drew from both Logo
and Smalltalk-72, but even more directly, Prolog.

� The traditional programming languagefamily of novice programming environ-
ments, which tried not to changethe language,but insteadprovide newstudent-
centered supports for existing programming languages.

2 Logo and its Descendan ts: The Goal of Compu-
tational Literacy

Logo was developed in the mid-1960'sby Wally Feuzeigand Danny Bobrow at BBN
Labs, in consultation with SeymourPapert at nearby MIT. Logo wasdesignedto be
\Lisp without parentheses." Lisp was a popular programming languagefor arti�cial
intelligenceprogramming. Lisp was known for its
exibilit y and the easewith which
data couldbecomeprogram,or vice-versa,making it very easyfor programsto manip-
ulate their own components. Lisp was especially good for creating and manipulating
representations of knowledge. (SeeFigure 1 for the family tree of this section.)

The answer to the question of \What makes programming hard?" for the Logo
developerswasanother question. When Logowas�rst beingdeveloped, peopledidn't
know that programmingwasgoing to be sohard for somany. Programmingwasstill
a curiosity, an activit y practiced only by the few who had accessto the still-rare
machines. The Logo developers asked instead \Wh y should students program?"

The answer to that question was related to Piagetian thinking about learning.
SeymourPapert worked for a time in Jean Piaget's laboratory. The goal for Logo
wasfor students to think about their own thinking, by expressingthemselvesin their

2

programsand then debuggingthe programsuntil they worked [6]. By debuggingthe
programs,the argument went, the students were debuggingtheir own thinking.

Students' early activities with Logoinvolved mathematicaland word games.Logo
was especially strong at playing gameswith language,e.g.,creating a Pig Latin gen-
erator. Later, a robot \turtle" was addedto the Logo environment, so that students
could control the robot with commandslike forward 1 to move the robot forward
a little bit, right 1 to turn right one degree,and pendownso that the robot's pen
(literally , a pen attached to the robot) would draw on the surfacebelow the robot as
it moved. With the turtle, Logo could be usedfor graphics,and in reverse,graphics
could be used to understand mathematics. When Logo was moved onto graphical
user interfaces(the �rst usesof Logo wereon paper-scrollingteletype terminals), the
turtle went with it, but as a graphical object that left graphical pen trails on the
screen.With graphics,mathematics,and languagesupport in Logo, tudent programs
in Logo could rangeover a broad set of knowledgeareas.

But the tasks that students could useLogo for werestill pretty limited. Logo was
fairly popular in scienceand math classes,but not much farther. Further, questions
started to be raisedabout whether students were really learning to program [7], and
what bene�ts (if any) were to be gainedfrom learning to program [8, 9].

The next step in the evolution of Logo was to consider\What tasks did students
want to useprogramming for?" Or, to build upon the corequestionof Logo, \What
domains did students want to learn about through programming?" The �rst ver-
sionsof Logo basically o�ered a programming environment that was a variation of a
commandline: A graphical areawas visible.

The �rst kind of Logothat really changedthe students' programmingenvironment
LogoWriter. LogoWriter integrated a word-processor,capableof both graphicsand
text, with a Logo interpreter. From a languageperspective, the LogoWriter turtle
could now act asa cursor changing letters beneathit, or stamping graphicsonto the
page. From an environment perspective, LogoWriter felt asmuch like an applications
program as a programming language. Now, students could do languagemanipula-
tion wherethey saw the languagemanipulation (as the cursor moved and the words
changed), and create programs that constructed mixed text-and-graphics the way
that they might in other applications software. LogoWriter took seriouslyproviding
task support so that the range of potential domains to explore with programming
was asbroad aspossible.

LogoWriter was used by Idit Harel in her thesis studies where she had fourth-
graders(10 yearsold) building software to teach fractions to third-graders [10]. Her
fourth-graders createdsoftware that wasn't too sophisticated,but did mix text and
graphicsutilizing the special featuresof LogoWriter. In the end, the fourth-graders
learnedsigni�cantly more about fractions than a comparisongroup of fourth-graders
taking a traditional math curriculum.

StarLogofollowed along the path of extending the languageand the environment
to focus on a particular kind of task. StarLogo supported exploration of distributed
environments [11]. Mitchel Resnick provided students with not one turtle, but liter-

3

ally thousandsof turtles|all running essentially the same,small program. He also
introduced the notion of a patch, a spot on the screenthat could hold state (such
as a color) and could run programs,but could not move as a turtle could. By using
patchesto represent food for ants or wood chips for termites, StarLogocould be used
to explore how ants (turtles) gather food or how termites (turtles) create piles, all
without coordination but through the power of simple, distributed programs.

MOOSE Crossing(by Amy Bruckman) again tuned Logo to a particular domain
and task, but a social onerather than a scienti�c or academictask. MOOSE Crossing
is a sharedtextual virtual reality. Students signon to MOOSE with specializedclient
software and explore a world created by peer students (all under 12 years old)|
and extend the world themselves. Students might create specialized rooms where
everything said in the room is turned into Pig Latin, or specializedobjects like pet
dragonsthat follow their ownersaround. Students move around, control their world,
and interact through Logo-like commands. These commandscan then be strung
together in proceduressuch that the dragon \w agsits tail" (i.e., displays the words
\dragon wags its tail" to all those in the sameroom of the virtual space)when the
dragon is \p et" (i.e., someuser in the sameroom types\p et the dragon.")

Bruckman found that students did learn programming in this environment, sup-
ported and motivated by the social context [12]. Students in MOOSE Crossingwere
able to talk with oneanother, show oneanother their creations,and even teach each
other to program, a surprising event that shedocumented. Her studiesshowed that
MOOSE defeatedsomegenderstereotypes by showing that girls were just as suc-
cessfulat programming as boys, if the context is motivating [13]. This was a strong
�nding in favor of Papert's initial premisethat it waswhat onedid with programming
that really mattered most.

Andrea diSessaalsoextendedLogo,but in a di�erent direction. Rather than tune
it to a speci�c task, he tried to think about what computation would look like if it
were a real literacy|as ubiquitous as text reading and writing is today [14]. Boxer
wasbasedon a principle of naive realism: Every object in the systemhasan on-screen
graphical representation that canbe inspected,modi�ed, and extended.For example,
variables are not just namesin Boxer. Creating a variable createsa named box on
the screenwhich corresponds to that variable. Setting the variable's value changes
(visibly) the contents of the corresponding box. Changing the contents of the box
(with direct manipulation and typing) changesthe value of the variable.

diSessaanswers the question about \What's hard about programming?" with
the answer, \The interface." Too much is abstract and hidden in traditional pro-
gramming languages.Boxer both makes the systemeasyto understand (becauseof
naive realism) and easyto apply to domainsbecause,like LogoWriter, it plays upon
similarity to applications software.

However diSessais alsoanswer the questionwith the answer, \The culture." Pro-
grammingwill alsobe challenging,but no morechallengingthan learning to readand
write. If programming skill was something that one started at an early age,and it
was something that everyonedid, it would be easierfor students to pick up. The

4

interesting question is what such computational literacy meansfor a society. Does
scienceand mathematicsbecomeeasierto learn becauseeveryone has the computa-
tional skills to develop models and visualizations to explore and better understand
complexconcepts?

Smalltalk-72, by Alan Kay, Dan Ingalls, Adele Goldberg, and other members of
the Xerox PARC Learning Research Group, extendedthe model of Logo in several
di�erent ways. Smalltalk was developed along the path to creating the Dynabook,
a computer whosepurposeis to support learning through creation and exploration
of the rich range of media that a computer enables[15]. Kay agreedwith Papert
that computers should be used by students for knowledge expressionand learning
through debuggingof those expressions. However, he felt that the computational
power provided by Logo was too weak, so he invented object-oriented programming
as a way of enabling much more complex artifacts to be created in exploration of
more complex domains. The command-linemetaphors of Logo were too weak for
the drawing, painting, and typeset-quality text that Kay felt was critical in order to
enablerich media creation, so he and his group literally invented the desktop user
interfaceaswe know it today (Figure 2).

While Smalltalk-72 was trialed successfullywith novice programmers,the later
versionsemphasizedobject-oriented programming for expert programmersand the
desktopuserinterfacefor applicationssoftware,andde-emphasizedthe computational
literacy ideas that Kay shared with diSessa. The notion of Smalltalk for novice
programmersdisappeared for perhaps 15 years. The latest versionsof Smalltalk,
Squeak[16, 17], is being usedagain with students, including youngerchildren.

3 Rule-Based Programming: Changing the Lan-
guage and the In terface

Another set of answers to the question \What makesprogramming hard?" includes
\The interface" (as diSessasaid) but also\The kind of programming" (as Kay said).
A group of researchers have developed non-textual programming environments ori-
ented aroundrule-based programming rather than traditional imperativeor procedural
programming. Students using rule-basedprogramming describe states of the world
as opposedto telling the computer how to operate upon the world.

Prolog was a popular rule-basedprogramming language,even with novices,even
when it simply had a command-linekind of interface. In Prolog, one states facts
about the world, e.g.,\The factorial of n is 1 if n = 1, and otherwise,it's the factorial
of n � 1." That isn't explicitly telling the computer how to get a factorial: It statesa
de�nition of factorial, which happensto be completeenoughto be executable.That's
how Prolog works. Prolog avoids someof the complexitiesof loops and conditionals
with which research shows students have di�cult y.

5

Figure 2: Smalltalk-72, the �rst systemwith overlapping windows, icons,menus, and
a mousepointing device|all designedfor the novice programmer.

6

Figure 3: An AgentSheetssimulation of a train

StagecastCreator1 and AgentSheets2 both explicitly support rule-basedprogram-
ming and a di�erent kind of interfacefor programming. The developers of Stagecast
(formerly KidSim and Cocoa) explicitly aimed to use all that was learned about
direct-manipulation interfacesto make the task of programming easier[18]. In both
of thesetools, the user de�nes rules that describe how the state of the world should
changeif particular conditions are met.

For example,considerthe AgentSheetssimulation of a train (in Figure 3). The
rule appearson the right of Figure 3 (from [19]). The rule states that if the train is
on the track on the left of the track, the train should move forward onto the right of
the track.

Both AgentSheetsand StagecastCreator are most often used for building sim-
ulations or video games(Figure 4). The graphical nature of rules lend themselves
to the kinds of motion and manipulations that many videogamesprovide. Both
AgentSheetsand StagecastCreator support non-graphical rules, as well. For exam-
ple, a more complex if condition can lead to a set of then actions, including sounds
and setting variable values.

Both areusedextensively in educationalsettings. StagecastCreator hasbeenused
by kids to build a variety of videogames,including several for Internet competitions.
AgentSheetshasbeenusedin somequite remarkable simulations for exploring social
studies,e.g.,simulations of how peacefulprotestscanbecomeriots, in a StarLogo-like
fashion [20].

ToonTalk3 by Ken Kahn is explicitly in
uenced by the work of Seymour Pa-
pert, but it follows the rule-basedand non-text model of StagecastCreator and
AgentSheets. ToonTalk takes the model of programming-as-videogamemuch fur-
ther than theseother two environments. In ToonTalk, a student's program explicitly

1http://www.stagec ast .c om
2http://www.agents heets .co m
3http://www.toonta lk. com

7

Figure 4: StageCastSimulation

Figure 5: ToonTalk charactersmanipulate Lego-like data

manipulatescharacters who, in turn, manipulate data and structures of data which
appear as Lego bricks (Figure 5). The rendering of ToonTalk is exceptionally high-
quality: The look-and-feelis asnice as a high-endvideogame(Figure 6).

ToonTalk givesthe sameanswersto \What makesprogramminghard?" asStage-
cast Creator and AgentSheets,but it provides someadditional ones.

� ToonTalk is concernedwith making it obvious who is doing what a program
commands.Agency is madevisible through its characters.

� LikeBoxer, ToonTalk includesnaiverealismin that everything is visible. What's
more, ToonTalk provides the metaphor of Lego to make clear how virtual ob-
jects are, literally, assembled.

� ToonTalk takesgreat painsto make surethat its executionhasthe samerealism
ashigh-endvideogames.For example,ToonTalk (like StarLogo)providesa high

8

Figure 6: ToonTalk running hasmultiple charactersand assembled data elements, all
renderedin beautiful quality

degreeof concurrency|things happenat once,just asthey do in the real world.
Kahn believesthat this makesit easierfor students to understandand develop
in ToonTalk.

4 Putting a New Face on an Old Language: Pro-
gramming to be Programmers

Still another answer to the questionof \What makesprogramming hard?" is to say,
\It's not the programming language.In fact, using idiosyncratic or ad hoc program-
ming languagesdecreasesstudent motivation, sincethe programmingskills developed
can't be used elsewhere. Instead, it's the programming environment|it needsto
support learning the skills of expert programmers." This answer is probably most
relevant to those students studying computer scienceas a potential profession,but
somehave arguedthat it's also relevant to students studying programming to learn
problem-solvingskills [21]. Environments that act upon this answer emphasizeteach-
ing designskills and sca�olding (providing additional support that students needbut
experts don't [22]) students to usetraditional languages.

Most of this work wasdonewhenPascalwasthe dominant programminglanguage
in schools (Figure 7). Theseenvironments had in commonsupport for structured edit-
ing and designsupport. Structured editing refers to how the text of the program is
manipulated. Rather than simply typing the textual program,structured editors sup-

9

! " # $ " %

! " # $" ! % & " ' $() *

+ , $- "

Figure 7: Family of novice programming environments basedon supporting tradi-
tional programming languages

Figure 8: A Geniefor loop with placeholdersto-be-completed

port speci�cation of elements (e.g., from menus) and the completion of placeholders
that �ll in the details of the program.

Probably the largest e�ort to create structured Pascal editors for students was
the Genie e�ort at Carnegie-MellonUniversity [23]. Over about a decade,several
di�erent Genieeditors werecreated. All of them provided structured editing support.
For example,a user might choosea for loop to be inserted into her code. The loop
would be insertedwith placeholdersidentifying whereadditional piecesneededto be
speci�ed (Figure 8), which could be completedby selectingplaceholdersand making
menu selections.Geniealsoprovided visualizationsin its debuggersso that diSessa's
principle of naive realism was usedto facilitate debugging(Figure 9).

The Geniedevelopers also realizedthat part of students' problem with program-
ming was in �guring out how to start and how to move forward to completion. Stu-
dents lackeddesignskills [21]. Genieprovided designviewsof programsthat explicitly
encouragedto seetheir programs as sets of components that they were assembling
(Figure 10).

10

Figure 9: Genie'seditor with visualizationsof data elements

Figure 10: Genie'sdesignview

11

Figure 11: GPCeditor: Goal-Plan-Code editor

The GPCeditor was another Pascal-basedstructured editor, like Genie, but it
started from the designview [24]. Rather then chooselanguageelements, students
usingthe GPCeditor speci�ed their goals, and then selectedplansfrom a Plan Library,
which were instantiated as code (thus, Goal-Plan-Code editor). Figure 11 shows the
students goal-plandecomposition in the upper left, their Plan Library in upper right,
the actual code (with the selectedcode corresponding to the highlight goal-plan) in
lower left, and the hierarchy of goal-plans in the lower right (overlapped with the
executionwindow of a running program).

The GPCeditor was notable for its evaluation e�ort. It was used in secondary
schools for several years,and �ndings suggestthat students did develop designskills
that transferred from GPCeditor to more traditional Pascal programming environ-
ments [24]. However, it's not clear that GPCeditor madethe task any easier.

Successorsto GPCeditor followed the same progressionas Logo, in that they
provided support for speci�c kinds of tasks that might themselves be motivating to
students. Emile supported students building hypermedia(basedon HyperCard) pro-
gramsthat simulated physical systems[25], using a goal-plan-code structure to ease
the editing of the (fairly) traditional programming language. The study of Emile
showed that students did learn a lot about physicsthrough construction of their sim-
ulations, but lessabout programming. A still later successor,ModelIt [26], supported
simulation of systems,but moved away from programming to a direct-manipulation
system that supported speci�cation of relationships between simulation factors as

12

manipulation of graphical and textual statements.

5 Summary: Are those the righ t problems?

In the over forty years of programming environments for novices that we skimmed
over here, it is clear that the research community has only started to addressthe
question of \What's hard about programming?" There are a great many answers
that have scarcely been addressed. For example, we know that today's children
useprocessorsall the time, but not on the desktop|in their handheld videogames,
cellphones,and Palm Pilots. Is programming too locked to the desktop? What
doesprogrammingmeanon thesesmaller devicesthat might be more motivating for
students to manipulate?

It may be in all of theseenvironments that it wasn't the environment that caused
the problem! Perhapsthe curriculum of introductory programming classesis wrong.
Perhapswe needto consideralternative ways of introducing theseconcepts.

Finally, it may be that \What makesprogramminghard?" is not the most fruitful
question to ask. Perhapswe don't know yet what programming really is or what it
could be (as diSessasuggestsin his book [14]). Perhaps we don't know yet what
students would really want to learn programming for.

This is not a dismal assessment of the �eld|it's an excited one! Designingpro-
grammingenvironments for novicesis a fascinating�eld that wehaveonly just started
to explore. There is a great many more questionsand answers to explore,and some
wonderful environments yet to build and try in that exploration.

13

References

[1] Phyllis C. Blumenfeld,Elliot Soloway, Ronald W. Marx, JosephS.Kra jcik, Mark
Guzdial, and Annemari Palincsar.Motivating project-basedlearning: Sustaining
the doing, supporting the learning. Educational Psychologist, 26(3& 4):369{398,
1991.

[2] Amy Bruckman. Situated support for learning: Storm's weekend with rachael.
Journal of the Learning Sciences, 9(3):329{372,2000.

[3] Amy Bruckman, Carlos Jensen,and Austina DeBonte. Gender and program-
ming achievement in a cscl environment. In Gerry Stahl, editor, Proceedings of
the 2002ComputerSupported Collaborative Learning conference, pagesIn{Press.
University of Coloradoat Boulder, Boulder, CO, 2001.

[4] Andrea diSessa.ChangingMinds. MIT Press,Cambridge, MA, 2001.

[5] T. R. G. Green. Conditional program statements and comprehensibility to pro-
fessionalprogrammers.Journal of Occupational Psychology, 50:93{109,1977.

[6] Mark Guzdial. Software-realizedsca�olding to facilitate programmingfor science
learning. Interactive Learning Environments, 4(1):1{44, 1995.

[7] Mark Guzdial. Squeak: Object-oriented design with Multimedia Applications.
Prentice-Hall, Englewood, NJ, 2001.

[8] Mark Guzdial, Michael Konneman, Christopher Walton, Luke Hohmann, and
Elliot Soloway. Layering sca�olding and cad on an integrated workbench: An
e�ectivedesignapproach for project-basedlearningsupport. InteractiveLearning
Environments, 6(1/2):143{179, 1998.

[9] Idit Harel and Seymour Papert. Software design as a learning environment.
Interactive Learning Environments, 1(1):1{32, 1990.

[10] C. Hoylesand R. Noss.Learning Logoand Mathematics. MIT Press,Cambridge,
MA, 1992.

[11] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: The story of squeak,a practical smalltalk written in itself. In
OOPSLA'97 Conference Proceedings, pages318{326.ACM, Atlanta, GA, 1997.

[12] Alan Kay and AdeleGoldberg. Personaldynamic media. IEEE Computer, pages
31{41, 1977.

[13] D.M. Kurland, C.A. Clement, R. Mawby, and R.D. Pea. Mapping the cognitive
demandsof learning to program. In R.D. Peaand K. Sheingold,editors, Mirr ors
of Minds, pages103{127.Ablex, Norwood, NJ, 1986.

14

[14] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-
gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and
TadeuszWilusz. A multi-national, multi-institutional study of assessment of
programmingskills of �rst-y ear csstudents. ACM SIGCSE Bulletin, 33(4):125{
140,2001.

[15] Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. Evolution of
noviceprogrammingenvironments: The structure editors of carnegie-mellonuni-
versity. Interactive Learning Environments, 4(2):140{158,1994.

[16] SeymourPapert. Mindstorms: Children, computers, and powerful ideas. Basic
Books, New York, NY, 1980.

[17] R.D. Pea and D.M. Kurland. On the cognitive e�ects of learning computer
programming. In R.D. Pea and K. Sheingold,editors, Mirr ors of Minds, pages
147{177.Ablex Publishing, Norwood, NJ, 1986.

[18] Alex Repenning, A. Ioannidou, and J. Phillips. Collaborative useand designof
interactive simulations. Proceeingsof Computer Supported Collaborative Learn-
ing Conference at Stanford (CSCL'99), 1999.

[19] Alex Repenning, A. Ioannidou, and J. Zola. Agentsheets: End-user pro-
grammable simulations. Journal of Arti�cial Societies and Social Simulation,
3(3), 2000.

[20] M. Resnick. Turtles, Termites, and Tra�c Jams: Explorations in Massively
Parallel Microworlds. MIT Press,Cambridge, MA, 1997.

[21] David Can�eld Smith, Allen Cypher, and Jim Spohrer. Kidsim: Programming
agents without a programminglanguage.Communications of theACM, 37(7):55{
67, 1994.

[22] E. Soloway, S.L. Jackson, J. Klein, C. Quintana, J. Reed, J. Spitulnik, S.J.
Stratford, S. Studer, J. Eng, and N. Scala. Learning theory in practice: Case
studies of learner-centered design. In M.J. Trauber, editor, CHI96 Conference
Proceedings, pages189{196.Vancouver, British Columbia, Canada,1996.

[23] Elliot Soloway. Learning to program = learning to construct mechanismsand
explanations. Communications of the ACM, 29(9):850{858,1986.

[24] Elliot Soloway, Je�rey Bonar, and Kate Ehrlich. Cognitive strategiesand looping
constructs: An empirical study. Communications of the ACM, 26(11):853{860,
1983.

[25] Elliot Soloway, Kate Ehrlich, Je�rey Bonar, and J. Greenspan.What do novices
know about programming? In Andre Badre and Ben Schneiderman, editors,

15

Directions in Human-Computer Interaction, pages87{122. Ablex Publishing,
Norwood, NJ, 1982.

[26] JamesC. Spohrer and Elliot Soloway. Putting it all together is hard for novice
programmers.In Proceedingsof the IEEE International Conference on Systems,
Man, and Cybernetics, volume March. 1985. Tucson,AZ.

16

